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An algebraic scheme for describing the bending dynamics of tetratomic molecules including linear, bent
planar, and bent a-planar species is introduced. The correlation diagram linear-cis-bent and linear-trans-
bent is constructed. Effective potential energy functions are evaluated by exploiting the method of coherent
states. A sample calculation of the bending vibrations of C2H2 in its X̃1Σg

+ electronic ground state is performed.

1. Introduction

Coupled benders provide an interesting window into the many
facets of molecular dynamics. In tetratomic molecules, for
example, several geometric configurations are possible: linear,
cis-bent, trans-bent and nonplanar, as schematically depicted
in Figure 1 for symmetric ABBA molecular species.

In addition, molecular species exist with a nonrigid structure,
intermediate between the four configurations of Figure 1. A
description of all configurations (rigid and nonrigid) within the
framework of a single approach is very challenging. Most
approaches so far have concentrated on linear or quasi-linear
geometries. Noteworthy are the force-field approach of Strey
and Mills to linear HCCH1,2 and the use of Dunham-type
expansion plus resonance terms.3,4 Within the algebraic meth-
odology, the approaches to the combined rotation-vibration
spectra of linear, HCCH, HCCD, DCCD,5 HCCF,6,7 and quasi-
linear, HCNO8 molecules, as well as to the purely vibrational
spectrum of HCCH9 are also worthy of notice. All approaches
require a large number of parameters for an accurate description
of all vibrational and rotational levels.

Much insight into the structure of tetratomic molecules can
be obtained by an analysis of pure-bend levels, i.e. two coupled
benders. These have been analyzed recently for linear molecules
in the Dunham-type expansion plus resonances approach,3,4 in
the force field expansion approach2,10 and with semiclassical
methods.11,12

In this article, we introduce a novel algebraic scheme for
describing coupled benders and show that already with a
Hamiltonian quadratic in the elements of the algebra (and thus
with few parameters) we can describe all situations depicted in
Figure 1. This scheme builds on the algebraic approach to
benders (two-dimensional problems) of Iachello and Oss13 in
terms of the Lie algebra U(3) (single bender) and U(3) X U(3)
(coupled benders), extended to nonrigid single benders in refs
14 and 15 and analyzed from the point of view of quantum
phase transitions in refs 16 and 17. The approach of ref 13 was
already extended to nonplanar molecules (H2O2) in ref 18. The

novel scheme presented in this article includes this extension
as a special case, since the interaction used in ref 18 to generate
spectra of nonplanar molecules is the quadrupole interaction
Q̂1 · Q̂2 which is part of our Hamiltonian equation (10). However,
it is more general, since, within the same framework, it can
describe all configurations of Figure 1, linear, cis-bent, trans-
bent and nonplanar. Cis-bent and trans-bent configurations had
not been treated previously within the algebraic approach.

To show that the new scheme can treat all cases, we construct
potential energy surfaces corresponding to our algebraic Hamil-
tonian as a function of the dihedral angle φ and show that they
support equilibrium configurations which are either linear (re

) 0), or cis-bent (re * 0, φ ) 0), or trans-bent (re * 0, φ ) π),
or nonplanar (re * 0, φ * 0, π).

As a sample calculation we perform fits to the lowest 53
observed pure-bend levels of the ground electronic state of
HCCH, X̃1Σ+. A fit with a quadratic Hamiltonian with 3
parameters yields a rms deviation of 17.1 cm-1 while a fit with
7 parameters yields a rms of 6.1 cm-1.

Our purpose in this article is to show what are the salient
features of the bending spectra of tetratomic molecules, and that
these features can be obtained with a limited number of
parameters. In ref 9, the bending spectra of HCCH in its ground
electronic state were studied. In addition to the 7 linear and
quadratic terms that we have included, the authors of ref 9
included also two cubic and three quartic terms. These terms
bring down the rms deviation to spectroscopic accuracy, 0.06
cm-1. Although we can easily introduce these terms, since they
are powers or products of the operators discussed in the section
below, we have not done so in this article, as our intention was
to present the general formalism and show that within this
formalism we can produce cis-bent, trans-bent, and nonplanar
configurations in addition to the linear configuration of ref 13.
Higher order terms can be introduced in a systematic fashion
in the algebraic approach as discussed in ref 19.

Within the framework of the algebraic approach it is also
possible to study intensities of infrared and Raman transitions.
A general way to construct the corresponding operators is given
in ref 19. For bending vibrations, the infrared operator were
introduced in ref 13 and the matrix elements calculated in ref
18. Matrix elements of these operators can be calculated also
for the novel algebraic scheme and will be the subject of a
subsequent investigation.
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2. Algebra for Coupled Benders

We begin by reviewing the algebraic approach to coupled benders of ref 13.

2.1. Bosonic U1(3) X U2(3) Algebra for Coupled Benders. Each bender (2D system) is described by a U(3) algebra constructed from
bilinear products of boson creation (τx

†, τy
†, σ†) and annihilation (τx, τy, σ) operators. For two benders (τx,s

† , τy,s
† , σs

†), (τx,s, τy,s, σs), s ) 1, 2. The boson
operators satisfy the usual commutation relations

where i, j ) 1, 2, R, � ) x, y, and all other commutators zero.
The 18 ) 9 + 9 bilinear products of creation and annihilation operators of the same species, s ) 1 or s ) 2, generate the Lie

algebra U1(3) X U2(3). It is convenient to introduce circular boson operators

Our choice of phases (different from ref 13) is the same as in ref 16. Circular bosons have also been used in the force field expansion of ref 10.
It is convenient to denote the bilinear products as13

where j ) 1, 2.
Starting from the algebraic structure U1(3) X U2(3), it is possible to list all the possible dynamical symmetries (i.e., situations in

which the energy eigenvalues can be written in explicit form in terms of quantum numbers) of the coupled systems. This list is
given in ref 13. We split it here into six, conserving total 2D angular momentum and relevant to ABBA molecules,

and one, relevant to molecules with inequivalent benders

[σi,σj
†] ) δi,j [τR,i,τ�,j

† ] ) δi,jδR,� (1)

τ(,j
† ) -

τx, j
† ( iτy, j

†

√2
(2a)

τ(, j ) -
τx, j - iτy, j

√2
j ) 1, 2 (2b)

n̂j ) τ+, j
† τ+, j + τ-, j

† τ-, j n̂σ, j ) σj
†σj

l̂j ) τ+, j
† τ+, j - τ-, j

† τ-, j

D̂+, j ) √2(τ+, j
† σj - σj

†τ-, j) D̂-, j ) √2(-τ-, j
† σj + σj

†τ+, j)

Q̂+, j ) √2τ+, j
† τ-, j Q̂-, j ) √2τ-, j

† τ+, j

R̂+, j ) √2(τ+, j
† σj + σj

†τ-, j) R̂-, j ) √2(τ-, j
† σj + σj

†τ+, j)

(3)

U1(3) X U2(3) ⊃ U1(2) X SO2(3) ⊃ SO1(2) X SO2(2) ⊃ SO12(2) (IV) (5)
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which we will not consider in this article. The symmetries Ia and IIa describe uncoupled benders, either linear (Ia) or bent (IIa).
They can be conveniently used to generate a basis for calculation. This basis is often denoted as local basis. The symmetries Ib and
IIb describe coupled benders, either linear (Ib) or bent (IIb). The chains IIIa and IIIb describe normal benders.19

Each of the choices in eq 4 contains subalgebras of U1(3) X U2(3), with elements

where the subindex 12 stands for the operator sum, e.g., n̂12 ) n̂1 + n̂2.
2.2. Hamiltonian. A generic Hamiltonian within the model space of the previous subsection 2.1 can be constructed by considering

the invariant Casimir operators of all subalgebras in eq 4,

The most general Hamiltonian up to terms which are quadratic in the elements of the algebra is

where the term Ĉ1[U12(3)] has been absorbed into E0 since it is a constant. This Hamiltonian has 14 parameters. For ABBA molecules,
the two benders are equivalent and symmetry considerations reduce the number of parameters to 9,

Figure 1. Schematic representation of the four geometrical configurations of ABBA tetratomic molecules: (a) linear; (b) cis-bent; (c) trans-bent;
(d) nonplanar.

U12(3) {n̂12,l̂12,D̂+,12,D̂-,12,R̂+,12,R̂-,12,Q̂+,12,Q̂-,12}
U12(2) {n̂12,l̂12,Q̂+,12,Q̂-,12}
Ui(2) {n̂i,l̂i,Q̂+,i,Q̂-,i}, i ) 1,2
SOi(3) {l̂i,D̂+,i,D̂-,i}, i ) 1,2
SO12(3) {l̂12,D̂+,12,D̂-,12}
SOi(2) {l̂i}; i ) 1,2
SO12(2) {l̂12}

(6)

Ĉ1[Ui(2)] ) n̂i Ĉ2[Ui(2)] ) n̂i(n̂i + 1), i ) 1, 2

Ĉ1[U12(2)] ) n̂12 Ĉ2[U12(2)] ) (n̂12
2 + l̂12

2 + n̂1
2 + n̂2

2 - l̂1
2 - l̂2

2)/2 + Q̂1 · Q̂2

Ĉ1[U12(3)] ) n̂12 + n̂σ,12 ) N̂12 Ĉ2[U12(3)] ) M̂12 ) n̂1n̂σ,2 + n̂2n̂σ,1 - D̂1 · D̂2 - R̂1 · R̂2

Ĉ2[SOi(3)] ) Ŵi
2 ) (D̂+,iD̂-,i + D̂-,iD̂+,i)/2 + l̂i

2, i ) 1, 2

Ĉ1[SOi(2)] ) l̂i Ĉ2[SOi(2)] ) l̂i
2, i ) 1, 2

Ĉ2[SO12(3)] ) Ŵ12
2 ) (D̂+,12D̂-,12 + D̂-,12D̂+,12)/2 + l̂12

2

Ĉ1[SO12(2)] ) l̂12 Ĉ2[SO12(2)] ) l̂12
2

(7)

Ĥ ) E0 + ∑
i)1

2

{eiĈ1[Ui(2)] + aiĈ2[Ui(2)] + biĈ2[SOi(2)] + ciĈ2[SOi(3)]} +

a12Ĉ1[U1(2)] Ĉ1[U2(2)] + b12Ĉ2[SO12(2)] + c12Ĉ2[SO12(3)] +
e12Ĉ1[U12(2)] + d12Ĉ2[U12(2)] + f12Ĉ2[U12(3)]

(8)
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Rather than using the abstract form eq 9, it is convenient to rewrite it in terms of operators with physical meaning

Equation 10 represents the algebraic expansion of the Hamiltonian up to order 2. The first 5 terms (ε, R, R12, �, �12) are diagonal
in the local basis (Dunham-like expansion) while the last four (λ, B, A, A12) represent the correlations that induce local to normal
transitions (λ), and linear to bent (B, A, A12).

2.3. Limiting Cases and Basis for Diagonalization. It is of interest to investigate the six dynamical symmetries (Ia, Ib, IIa, IIb,
IIIa, IIIb) of the Hamiltonian of eq 4. For the sake of conciseness we consider in this article only two, Ia and IIa, which provide the
basis for the numerical diagonalization of the Hamiltonian.

2.3.1. Dynamical Symmetry Ia. This limiting case is of particular importance, since it provides the most convenient basis for
numerical diagonalization of the Hamiltonian operator. The basis states are labeled by

The quantum number l12 ) l1 + l2 has been placed in parentheses since it is not independent of the others. The quantum numbers Ni (vibron
numbers) label the totally symmetric representations of Ui(3), i.e., the dimension of the space in which the calculation is done. The quantum
numbers ni denote the local vibrational quantum number and li is the 2D angular momentum for each cylindrical oscillator, with i ) 1, 2. The
quantum number l12 is the coupled 2D angular momentum, l12 ) l1 + l2. We call the basis associated with chain Ia the local basis.

The branching rules are

where i ) 1, 2.
This limiting case corresponds to taking λ ) B ) A ) A12 ) 0 in eq 10. The energy eigenvalues are

In eq 13 the labels N1 and N2 have been dropped and l12 has been omitted since it is equal to l1 + l2. The basis states can be written as

where the compact spectroscopic notation |n1
l1, n2

l2〉 has been used.
This dynamical symmetry corresponds to two local uncoupled linear benders.
2.3.2. Dynamical Symmetry IIa. The basis states are labeled by

The branching rules are

Ĥ ) E0 + e ∑
i)1

2

Ĉ1[Ui(2)] + a ∑
i)1

2

Ĉ2[Ui(2)] +

b ∑
i)1

2

Ĉ2[SOi(2)] + c ∑
i)1

2

Ĉ2[SOi(3)] +

a12Ĉ1[U1(2)] Ĉ1[U2(2)] + b12Ĉ2[SO12(2)] + c12Ĉ2[SO12(3)] +
d12Ĉ2[U12(2)] + f12Ĉ2[U12(3)]

(9)

Ĥ ) E0′ + ε(n̂1 + n̂2) +
R[n̂1(n̂1 + 1) + n̂2(n̂2 + 1)] + R12n̂1n̂2 +
�(l̂1

2 + l̂2
2) + �12l̂1l̂2 +

λ(D̂1 · D̂2 + R̂1 · R̂2) + BQ̂1 · Q̂ +
A(Ŵ1

2 + W2
2) + A12Ŵ1 · Ŵ2

(10)

|U1(3) X U2(3) ⊃ U1(2) X U2(2) ⊃ SO1(2) X SO2(2) ⊃ SO12(2)
[N1] [N2] n1 n2 l1 l2 (l12) 〉 (11)

ni ) Ni, Ni - 1, Ni - 2, ..., 0
li ) (ni, ((ni - 2), ..., (1 or 0 (ni ) odd or even) (12)

E(Ia)(n1,l1,n2,l2) ) E0 + ε ∑
i)1

2

ni + R∑
i)1

2

ni(ni + 1) + R12n1n2 + � ∑
i)1

2

li
2 + �12l1l2 (13)

|n1
l1,n2

l2〉 ) ∏
i)1

2 (σi
†)Ni-ni(τi,+

† )(ni+li)/2(τi,-
† )(ni-li)/2

�(Ni - ni)!(ni + li

2 )!(ni - li

2 )!

|0〉 (14)

|U1(3) X U2(3) ⊃ SO1(3) X SO2(3) ⊃ SO1(2) X SO2(2) ⊃ SO12(2)
[N1] [N2] ω1 ω2 l1 l2 (l12) 〉 (15)
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As in the dynamical symmetry Ia, the l12 label can be omitted.
It is convenient to introduce a vibrational quantum number Vi,
which can be identified with the number of quanta of excitation
in the ith displaced oscillator:

The branching rules in terms of Vi are

This limiting case corresponds to taking ε ) R ) R12 ) λ )
A12 ) B ) 0 in eq 10. The energy eigenvalues are

This dynamical symmetry corresponds to two local uncoupled
displaced benders.

2.4. Operator Matrix Elements. To diagonalize the Hamil-
tonian of eq 10 in the local basis (Ia), one needs the matrix
elements of those operators that are nondiagonal, that is, D̂1 · D̂2

+ R̂1 · R̂2, Q̂1 · Q̂2, (Ŵ1
2 + Ŵ2

2), and Ŵ1 · Ŵ2.
2.4.1. Operator D̂1 · D̂2 + R̂1 · R̂2. Matrix elements of the

Ĉ2[U12(3)] Casimir operator, called the Majorana operator, were
given in ref 13. The operator D̂1 · D̂2 + R̂1 · R̂2 is part of the
Majorana operator (see eq 7). Its matrix elements in the local
basis are

and similar expressions with the index 1 interchanged with 2
on the left-hand side.

The operator D̂1 · D̂2 + R̂1 · R̂2 conserves the polyad number
of Kellman11,20 in a local approach and leads from local to
normal behavior.21 This operator, when viewed from the normal
basis, induces Darling Dennison couplings as discussed in ref
19, p 94.

2.4.2. Quadrupole Interaction Q̂1 · Q̂2. The matrix elements
of Q̂1 · Q̂2 are

This operator is called vibrational l resonance in ref 3. It
conserves the polyad number22 in a local approach.

2.4.3. Operators Ŵ1
2 and Ŵ2

2. The diagonal matrix elements
of Ŵ1

2 and Ŵ2
2 are

The off-diagonal matrix elements are

where i, j ) 1, 2 and i * j.
The operators Ŵ1

2 and Ŵ2
2 lead from linear to bent. They do

not preserve polyad number.
2.4.4. Operator Ŵ1 · Ŵ2. The diagonal matrix elements are

while the off-diagonal matrix elements are

and similar expressions with the index 1 interchanged with 2
on the left-hand side. It is seen that Ŵ1 · Ŵ2 has matrix elements
that conserve the polyad number, similar to those of M̂12, and
some which do not. This operator leads to cis-bent and trans-
bent configurations.

2.5. Symmetry Adapted Basis. If only the nondiagonal
operators M̂12 and Q̂1 · Q̂2 are kept in addition to the diagonal
(Dunham-like) terms, the dimension of the matrix to diagonalize
is still manageable, even for large N ) N1 + N2, since then, the
interactions conserve polyad number, n1 + n2. This is appropri-
ate for linear molecules. However, in the general case in which
the operators Ŵi

2 and Ŵ1 · Ŵ2 are kept, one must diagonalize in

ωi ) Ni, Ni - 2, Ni - 4, ..., 1 or 0
(Ni ) odd or even); i ) 1, 2

li ) (ωi, ((ωi - 1), ..., (1, 0; i ) 1,2 (16)

Vi )
Ni - ωi

2
(17)

Vi ) 0, 1, ...,
Ni - 1

2
or

Ni

2
(Ni ) odd or even)

li ) 0, (1, (2, ..., ((Ni - 2Vi); i ) 1, 2
(18)

E(IIa)(V1,V2,l1,l2) ) E0 - 4A ∑
i)1

2

[(Ni + 1/2)Vi - Vi
2] (19)

+ � ∑
i)1

2

li
2 + b12l1l2

〈(n1 - 1)l1-1,(n2 + 1)l2(1|D̂1 · D̂2 + R̂1 · R̂2|n1
l1,n2

l2〉 )

�(N1 - n1 + 1)(N2 - n2)(n1 ( l1

2 )(n2 ( l2

2
+ 1)

(20)

〈n1
l1(2,n2

l2-2|Q̂1 · Q̂2|n1
l1,n2

l2〉 )

�(n1 - l1)(n2 ( l2)(n1 ( l1

2
+ 1)(n2 - l2

2
+ 1) (21)

〈n1
l1,n2

l2|Ŵi
2|n1

l1,n2
l2〉 ) 2Ni(ni + 1) - (2ni + 1)ni + li

2

(22)

〈(ni - 2)li,nj
lj|Ŵi

2|ni
li,nj

lj〉 )

-√(Ni - ni + 2)(Ni - ni + 1)(ni + li)(ni - li) (23)

〈n1
l1,n2

l2|Ŵ1 · Ŵ2|n1
l1,n2

l2〉 ) l1l2 (24)

〈(n1 + 1)l1+1,(n2 + 1)l2-1|Ŵ1 · Ŵ2|n1
l1,n2

l2〉 )

- �(N1 - n1)(N2 - n2)(n1 + l1

2
+ 1)(n2 - l2

2
+ 1)

〈(n1 + 1)l1+1,(n2 - 1)l2-1|Ŵ1 · Ŵ2|n1
l1,n2

l2〉 )

�(N1 - n1)(N2 - n2 + 1)(n1 + l1

2
+ 1)(n2 + l2

2 )
〈(n1 - 1)l1+1,(n2 + 1)l2-1|Ŵ1 · Ŵ2|n1

l1,n2
l2〉 )

�(N1 - n1 + 1)(N2 - n2)(n1 - l1

2 )(n2 - l2

2
+ 1)

〈(n1 - 1)l1+1,(n2 - 1)l2-1|Ŵ1 · Ŵ2|n1
l1,n2

l2〉 )

- �(N1 - n1 + 1)(N2 - n2 + 1)(n1 - l1

2 )(n2 + l2

2 )
(25)
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the full space and the dimension becomes very large. Even
taking into account the fact that the total 2D angular momentum
l12 ) l1 + l2 is conserved, the dimension of the Hamiltonian
blocks (for N1 ) N2 ) N/2) is

A reduction in the dimension of the blocks can be achieved by
constructing a symmetry adapted basis. We use in this article
the basis (Ia) and construct the symmetry adapted basis by using
the so-called eigenfunction method of Chen,23 adapted to
molecular vibrations by Lemus.24

2.5.1. Linear Case, D∞h. In Figure 2, we show the coordinate
assignments for a linear molecule with two benders. The
symmetry here is D∞h, with irreducible representations (irreps)
Σg/u
( for l12 ) 0, Πg/u for l12 ) 1, ∆g/u for l12 ) 2, and so on.
The first step for building a symmetry-adapted basis consists

in splitting the basis space into gerade and ungerade subspaces.
To do so, we consider the transposition operator, (12), that
permutes the two U(3) algebras. This symmetry operation
corresponds to (σh), reflection through a plane perpendicular
to the molecular axis,25,26 as can be seen in Figure 2. The
result of the application of the transposition operator to a
local basis state is

and, upon diagonalization of its associated matrix, one can
separate the gerade (eigenvalue λ ) 1) and ungerade
(eigenvalue λ ) -1) subspaces. This is enough to treat the
l12 * 0 cases. Each Hamiltonian block, Hl12

, is split into its
gerade and ungerade components as

where G and U are the orthonormal bases formed with the
eigenvectors of the transposition operator with eigenvalues
λ ) 1 and λ ) -1, respectively.

The Σ case (l12 ) 0) requires further work to assign the (
labels. The relevant symmetry operation in this case is (σv), the
reflection plane that contains the molecular axis.27 As shown in
Figure 2, the action of (σv) on the coordinates leaves xs invariant

and changes the sign of ys (s ) 1, 2). For circular boson
operators, this implies

Using eq 14

In particular, for l12 ) 0, the former equation reduces to

as l1 ) -l2 and the number of quanta n1 and n2 have the same
parity. If the matrix S defined by the action of the (σv) operator
is constructed, it can be first split into gerade and ungerade
components as in eq 28.

The eigenfunctions of Sg (Su) associated with the eigenvalue
λ ) 1(-1) correspond to Σg

( (Σu
() and form an orthonormal

invariant subspace. Finally, the Σ Hamiltonian matrix block for
Σ states is divided into four sub-blocks

where G( and U( are the orthonormal bases formed with the
eigenvectors of the transposition operator (12) and of (σv).

2.5.2. Cis-Bend and Trans-Bend Cases, C2W and C2h. Panels
a and b of Figure 3 show these configurations. In the first case,
cis configuration, the molecular point symmetry group is C2V,
and the symmetry operations necessary to assign symmetry
labels to the states are the reflections σv(xz) and σv(yz), shown
in panel a of Figure 3. Those two symmetry operations can be
mapped to (σv) and (σh) of the linear case. The irreps involved
for every value of l are A1, A2, B1, and B2. They are associated
with eigenvalue pairs ((12), (σv)) ) (1, 1), (-1, -1), (-1, 1),
and (1, -1) respectively.23,25

The second possible configuration is a trans configuration,
with C2h symmetry, depicted in panel b of Figure 3. The relevant
symmetry operations in this case are the reflection plane (σh),
which corresponds to the (σv) reflection plane in the linear

Figure 2. Schematic representation of the coordinate assignment and
relevant symmetry operations in the linear case.

dim(l12) )
1
4 ∑

l1)l12-N/2

N/2

(N/2 - |l12 - l1| -

mod(N/2 - |l12 - l1|, 2) + 2) ×
(N/2 - |l1| - mod(N/2 - |l1|, 2) + 2)

(26)

(12)|n1
l1,n2

l2〉 ) |n2
l2,n1

l1〉 (27)

Hl12

g ) G ·Hl12
·Gt

Hl12

u ) U ·Hl12
·Ut (28)

Figure 3. Schematic representation of the coordinate assignment and
relevant symmetry operations in the nonlinear cases. Panel a, symmetry
C2V cis configuration. Panel b symmetry C2h trans configuration.

(σv)τs,(
† (σv) ) -τs,-

† , s ) 1, 2 (29)

(σV)|n1
l1,n2

l2〉 ) (-1)n1+n2|n1
-l1,n2

-l2〉 (30)

(σV)|n1
l ,n2

-l〉 ) |n1
-l,n2

l 〉 (31)

Hl12)0
g,( ) G( ·Hl12)0

g ·G(
t

Hl12)0
u,( ) U( ·Hl12)0

u ·U(
t (32)
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configuration, and the inversion (I). In the last case the action
of (I) upon basis states results in

These two operators should be diagonalized and the possible
irreps are Ag, Au, Bg, and Bu with eigenvalues (1, 1), (-1, -1),
(-1, 1), and (1, -1).

2.5.3. Nonplanar Case, C2. The construction of the symmetry
adapted basis for this case will not be reported here, but it will
be presented in a forthcoming publication.

3. Correlation Diagrams. The main advantage of the
algebraic formulation is that one can describe, within the same
framework, all configurations, linear, cis-bent, trans-bent, and
nonplanar with local and normal behavior as well as
intermediate situations. This aspect is best shown by con-
structing correlation diagrams, that is, diagrams in which the
energy levels are followed from one limiting case to the other.
Correlation diagrams from local to normal were constructed
long ago and reported in refs 19 and 28. Here we show the
correlation diagrams linear-cis-bent and linear-trans-
bent.

To construct these correlation diagrams, we diagonalize a
simplified Hamiltonian

where P̂i ) Ni(Ni + 1) - Ŵi
2. This Hamiltonian, called the

essential Hamiltonian in the theory of quantum phase transitions,
contains Casimir operators of chain Ia (linear) and IIb (bent-
coupled). It corresponds to R ) R12 ) � ) �12 ) λ ) B ) 0 in
eq 10 and ε ) ε′(1 - 	), A ) ε′	/N, and A12 ) 2ε′	η/N. The
parameters 	 and η are called control parameters. The parameter
	 determines the structure linear-bent, while the parameter η
determines the nature of the coupling between the two benders,
η > 0 trans-bent, η < 0 cis-bent. In Figure 4, Figure 5, and
Figure 6, we show the correlation diagram for states with l12 )
0 (Σ states in the linear limit), for a fixed value of η ) 0, (1.
These correlation diagrams were also shown in ref 17 in a
slightly different form. In Figure 4, all states are doubly
degenerate since there is no interaction between the two benders,
η ) 0.

It is instructive to show also the correlation diagram for states
with l12 ) 1 (Π states in the linear limit), given in Figure 7, Figure
8, and Figure 9. Again, in Figure 7, all the states are doubly
degenerate. One can see that the transition from linear to bent is
characterized by a softening of the Π mode (Πg for transition to
cis-bent and Πu for transition to trans-bent). The energy of the Π
states becomes zero in the bent limit, since these states become
part of the rotational ground state band.29

In addition to showing that all situations, linear, cis-bent,
trans-bent, local, and normal can be described in a simple
framework, correlation diagrams are also useful to study
quantum phase transitions, that is, phase transitions that occur
as a function of a coupling constant, here 	, rather than the
temperature. These transitions were investigated for a single
bender in ref 16. They can occur both at zero energy, i.e., in
the ground state, and at higher energies. In the last case they
are known as excited state quantum phase transitions (ES-
QPT)30 and are particularly interesting. For example, the
water molecule, with a single bender, appears to undergo an

Figure 4. Correlation energy diagram for N1 ) N2 ) 6, and vibrational
angular momentum l12 ) 0. The control parameter η ) 0. Panels a-d
correspond to symmetries Σg

+, Σg
-, Σu

+, and Σu
- in the linear limit.

(I)|n1
l1,n2

l2〉 ) (-1)n1+n2|n2
l2,n1

l1〉 (33)

Figure 5. Correlation energy diagram for N1 ) N2 ) 6, and vibrational angular momentum l12 ) 0. The control parameter η ) 1. Both the linear,
Σg
+, Σg

-, Σu
+, Σu

-, and trans-bent, Ag, Bg, Bu, Au, symmetry labels are indicated.

Ĥ(Ia-IIb) ) ε′((1 - 	)[n̂1 + n̂2] + 	[P̂1 + P̂2

N
+ 2η

Ŵ1 · Ŵ2

N ])
(34)
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ESQPT from bent to linear around 11 000 cm-1.31 For coupled
benders, one can have two types of QPT or ESQPT,
normal-local or linear-bent. The transition normal to local
appears to occur in C2H2 at ≈15 000 cm-1.32 This transition
can be related to the appearance of new modes born in the
bifurcation of traditional normal modes.11 The physical insight
into this problem can be enlarged using catastrophe theory.12

An appealing subject for future developments is the study
of the possible relationship between ESQPT and bifurcations
in classical Hamiltonians.

4. Semiclassical Analysis and Potential Functions. The
algebraic expansion of the Hamiltonian Ĥ of eq 10 is similar to
the Dunham-like expansion plus perturbations commonly used
in molecular spectroscopy.3 An alternative method of analysis

is the force field expansion1,2,10 in which the Hamiltonian is
written in terms of coordinates and momenta. This expansion
can be retrieved from the algebraic Hamiltonian by the method
of coherent (or intrinsic) states. One introduce the states

where (ri, θi) are the polar coordinates associated with xi, yi

(i ) 1, 2), in Figure 2,

Figure 6. Correlation energy diagram for N1 ) N2 ) 6, and vibrational angular momentum l12 ) 0. The control parameter η ) -1. Both the linear,
Σg
+, Σg

-, Σu
+, Σu

-, and cis-bent, A1, B2, B1, A2, symmetry labels are indicated.

Figure 7. Correlation energy diagram for N1 ) N2 ) 6, and vibrational angular momentum l12 ) 1. The control parameter η ) 0. Left and right
panels correspond to symmetries Πg and Πu in the linear limit.

|[N1][N2];r1,θ1;r2,θ2〉 )
1

√N1!N2!
(bc,1

† )N1(bc,2
† )N2|0〉 (35)
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The states (35) will be simply denoted by |r1, θ1; r2, θ2〉 in the
following paragraphs.

Operators bc,i
† are the creation operators for the ith boson

condensate

These coherent states were originally introduced in the study
of nuclei33-36 and adapted later to molecular systems.37-41 The
parameters (ri, θi) in the coherent state are in general complex
and represent coordinates and momenta.40,41 In this article, we
consider only the dependence on coordinates and thus put all
momenta, pr,i, pθ,i, i ) 1, 2, equal to zero.19

Figure 8. Correlation energy diagram for N1 ) N2 ) 6, and vibrational angular momentum l12 ) 1. The control parameter η ) 1. Left and right
panels correspond to symmetries Πg and Πu in the linear limit.

Figure 9. Correlation energy diagram for N1 ) N2 ) 6, and vibrational angular momentum l12 ) 1. The control parameter η ) -1. Left and right
panels correspond to symmetries Πg and Πu in the linear limit.

{xi ) ri cos θi

yi ) ri sin θi
(36) bc,i

† ) 1

√1 + r2
[σi

† + (xiτi,x
† + yiτi,y

† )] (37)
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The expectation values of the operators appearing in the general Hamiltonian, eq 10, in the intrinsic state are

where N1 ) N2 ) N/2 for ABBA molecules. These expectation values depend only on the dihedral angle between the two
B-B-A groups, φ ) θ1 - θ2, and hence the intrinsic states have been written in 38 as |r1, r2, φ〉. The expectation value of
the Hamiltonian 10 in the intrinsic state gives the ground state energy functional, E(r1, r2, φ), or potential function

This expansion of the potential function is similar in spirit to the conventional expansion, for example as given in ref 42. The
potential function (39) depends on the displacements (r1, r2) of the benders from the molecular axis of Figure 2 and on the
dihedral angle φ.

The equilibrium configuration of the molecule is obtained by minimizing E(r1, r2, φ) with respect to the variables r1, r2, and φ.
For ABBA molecules we can put r1e ) r2e ) re. This equilibrium configuration depends on the values of the parameters.

One can see that the potential function (39) includes the following cases: (a) re ) 0 (linear configuration, Figure 1a); (b) re * 0,
φ ) 0, the benders are displaced in the same direction (planar cis-configuration, Figure 1b); (c) re * 0, φ ) π, the benders are

〈r1,r2,φ|n̂1 + n̂2|r1,r2,φ〉 ) N
2 ∑

i)1

2 ri
2

1 + ri
2

〈r1,r2,φ|n̂1(n̂1 + 1) + n̂2(n̂2 + 1)|r1,r2,φ〉 )

N ∑
i)1

2 {N/2 - 1
2

ri
2

1 + ri
2
+ 1} ri

2

1 + ri
2

〈r1,r2,φ|n̂1n̂2|r1,r2,φ〉 ) N2

4

r1
2r2

2

(1 + r1
2)(1 + r2

2)

〈r1,r2,φ| l̂1
2 + l̂2

2|r1,r2,φ〉 ) N
2 ∑

i)1

2 ri
2

1 + ri
2

〈r1,r2,φ| l̂1l̂2|r1,r2,φ〉 ) 0

〈r1,r2,φ|M̂12|r1,r2,φ〉 ) N2

4 [ ∑
i)1

2 ri
2

1 + ri
2
- 2 ∏

i)1

2 ri
2

1 + ri
2
- 8( ∏

i)1

2 ri

1 + ri
2) cos(φ)]

〈r1,r2,φ|P̂1 + P̂2|r1,r2,φ〉 ) N(N - 2)
4 ∑

i)1

2 (1 - ri
2

1 + ri
2)2

〈r1,r2,φ|2Ŵ1 · Ŵ2|r1,r2,φ〉 ) 2N2( ∏
i)1

2 ri

1 + ri
2) cos(φ)

〈r1,r2,φ|Q̂1 · Q̂2|r1,r2,φ〉 ) N2

4 ( ∏
i)1

2 ri
2

1 + ri
2) cos(2φ)

(38)

E(r1,r2,φ) ) 〈i.s.|Ĥ|i.s.〉
N

≡ V(r1,r2,φ)

) ε
2 ∑

i)1

2 ri
2

1 + ri
2
+ �

2 ∑
i)1

2 ri
2

1 + ri
2
+

R∑
i)1

2 ((N/2 - 1)
2

ri
2

1 + ri
2
+ 1) ri

2

1 + ri
2
+ R12

N
4

r1
2r2

2

(1 + r1
2)(1 + r2

2)
+

A
(N - 2)

4 ∑
i)1

2 (1 - ri
2

1 + ri
2)2

+ 2A12N( ∏
i)1

2 ri

1 + ri
2) cos(φ) +

λN
4 [ ∑

i)1

2 ri
2

1 + ri
2
- 2 ∏

i)1

2 ri
2

1 + ri
2
- 8( ∏

i)1

2 ri

1 + ri
2) cos(φ)] +

B
N
4 ( ∏

i)1

2 ri
2

1 + ri
2) cos(2φ)

(39)
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displaced in opposite directions (planar trans-configuration,
Figure 1c); (d) re * 0,φ * 0, π (nonplanar configuration,
Figure 1d).The last case occurs only if the coefficient B in
eq 39 is different from zero, as first discussed in ref 18;
equilibrium values of φ different from 0, π arise from the

competition between the term in cos(φ) and the term in
cos(2φ). The maximal nonplanarity is for φ ) π/2.

To visualize how the transitions from linear to bent occurs in
the potential function, it is convenient to consider the simplified
Hamiltonian (34). In this case the potential function is

Figure 10. Potential surfaces (arbitrary units) as a function of r1 and r2 for fixed φ ) 0°. Panel a: 	 ) 0.0. Panel b: 	 ) 0.2, η ) -1.0. Panel c:
	 ) 0.6, η ) -1.0. Panel d: 	 ) 1.0, η ) -1.0. In all cases, N ) 50.

Figure 11. Residuals for the fits H0 (upper panel, open symbols) and H3 (lower panel, filled symbols) to C2H2 experimental bending term values
below 6000 cm-1.
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This function is shown in Figure 10 for φ ) 0 and 	 ) 0.0, 0.2,
0.6, and 1.0 and η ) -1. The minimum shifts from r1e ) r2e ) 0
at 	 ) 0 (linear) to r1e ) r2e ) 1 at 	 ) 1 (cis-bent). The
displacements r1e, r2e are here dimensionless. To compare with ab
initio calculations of the potential energy surface, one needs to
introduce a scale S as in ref 14. A similar figure can be constructed
for trans-bent configurations with η ) 1.0.

The simplified potential function (40) is amenable to the study
of quantum phase transitions. There are two control parameters,
	 and η, and the phase diagram is two-dimensional. A
preliminary account of linear-cis-bent and linear-trans-bent
phase transitions was given in ref 17. Quantum phase transitions
can also be studied by means of catastrophe maps.11,12 For the
simplified Hamiltonian (34) the catastrophe map is a plane and
it corresponds to the catastrophe map of a single resonance
discussed in refs 11 and 12. The two control parameters 	 and
η are equivalent to the two control parameters A1 and A3 of ref
12. For the general potential function (39) there are more control
parameters and the phase diagram (and its corresponding
catastrophe map) are multidimensional. A study of multidimen-
sional phase diagrams has been done within the framework of
algebraic models in nuclear physics.43,44 The study of multidi-
mensional catastrophe maps has been recently proposed by Tyng
and Kellman12 in the treatment of bending vibrations of
acetylene. A multidimensional study for the full algebraic
Hamiltonian (10) will be presented elsewhere.

5. Sample Calculation: Bending Vibrations of C2H2

(X̃1Σ+). To illustrate the algebraic approach to bending vibra-
tions in tetratomic molecules, we perform here a calculation of
acetylene, C2H2, in its electronic ground state X̃1Σ+. We consider
a total number of 53 term values below 6000 cm-1 taken from
refs 4, 10, 42, 45, 47, and 48. The parameter optimization is
obtained using the Minuit package.46 All fits are done within a

model space with N1 ) N2 ) 20. The parameter values obtained
including different physically relevant operators are given in
Table 1.

One can see from these fits that one can obtain a description
of the 53 levels with rms ) 17.1 cm-1 in terms of only three
parameters, ε, �, and λ. The introduction of the parameter B
(l-resonance) brings the rms down to 11.2 cm-1. Not much is

E(r1,r2,φ) ) 〈r1,r2,φ|Ĥ(Ia-IIb)|r1,r2,φ〉
ε′N ≡ V(r1,r2,φ)

) (1 - 	)[1
2 ∑

i)1

2 ri
2

1 + ri
2] + 	[(N - 2)

4N
×

∑
i)1

2 (1 - ri
2

1 + ri
2)2

+ 2η( ∏
i)1

2 ri

1 + ri
2) cos(φ)]

(40)

TABLE 1: Parameters Obtained from Fits to the Available
Experimental Bending Energy Levels below 6000 cm-1 for
C2H2 with the Two-Body Algebraic Hamiltonian, eq 10, with
N1 ) N2 ) 20 and Different Subsets of the Available
Parametersa

param H0 H1 H2 H3

ε 667.27(6) 665.73(7) 598.8(27) 667.98(15)
R 3.33(13) -1.68(3)
R12 6.46(10)
� 4.03(5) 5.09(5) 3.53(9) 4.54(6)
�12 2.02(14)
λ -2.539(3) -2.649(4) -2.669(4) -2.705(4)
A 1.66(6)
A12

B 3.52(4) 3.61(4) 4.10(5)
rms 17.1 11.2 11.1 6.1

a A total number of 53 term values were included. Numbers in
parentheses denote one standard deviation of the least squares fit
assuming equal error for all experimental levels. Parameters and
rms are in units of cm-1.

TABLE 2: Bending C2H2 Experimental Term Values and
Residuals Associated with the Calculations H0, H1, and H3

Whose Parameters are Given in Table 1a

l12 Γ (ν4
l4, ν5

l5) Eexp
4,10,42,45,47,48 Exp - EH0

Exp - EH1
Exp - EH3

0 Σg
+ 2000 1230.39 -9.11 -6.05 -1.80

0 Σg
+ 0020 1449.11 11.48 5.39 4.47

0 Σg
+ 2222 2648.02 -21.06 -10.24 -3.55

0 Σg
+ 0040 2880.22 14.84 -4.56 -13.87

0 Σg
+ 6000 3765.99 17.48 6.76 0.60

0 Σg
+ 4020 3940.48 -16.52 1.65 4.33

0 Σg
+ 8000 5066.97 48.86 21.98 5.31

0 Σg
+ 6020 5216.22 -13.34 8.88 3.73

0 Σg
- 2222 2661.19 -15.94 2.18 2.76

0 Σu
+ 1111 1328.08 -6.46 -3.38 2.20

0 Σu
+ 1131 2757.80 -9.03 -15.71 -10.18

0 Σu
+ 3111 2560.60 -18.79 -16.02 -0.93

0 Σu
+ 5111 3818.43 -16.12 -20.10 0.88

0 Σu
+ 7111 5098.38 -1.76 -18.59 7.99

0 Σu
+ 5131 5254.53 -5.13 14.24 -6.35

0 Σu
- 1111 1340.55 -2.04 5.96 5.99

0 Σu
- 1131 2783.65 -0.24 1.83 -1.31

0 Σu
- 3111 2583.84 -10.69 3.01 4.55

0 Σu
- 5111 3850.32 -5.52 8.84 4.92

0 Σu
- 7111 5137.37 10.75 21.58 6.81

0 Σu
- 5131 5298.93 24.55 2.78 -3.19

1 Πg 1100 612.87 -7.65 -4.97 -2.18
1 Πg 1120 2049.06 -4.93 -1.20 2.47
1 Πg 1122 2066.99 0.60 3.02 5.71
1 Πg 3100 1855.72 -9.28 -6.94 -3.34
1 Πu 0011 730.33 8.26 6.53 7.06
1 Πu 2211 1941.18 -16.51 -8.43 -1.77
1 Πu 2011 1960.87 -8.55 -0.88 4.43
1 Πu 0031 2170.34 15.60 4.16 6.37
2 ∆g 2200 1233.52 -14.03 -9.81 -6.40
2 ∆g 0022 1463.02 17.33 12.87 12.12
2 ∆g 2220 2666.15 -19.03 -20.57 -4.24
2 ∆g 0042 2894.07 20.64 2.86 -6.30
2 ∆g 6200 3769.12 12.57 2.91 -4.39
2 ∆g 4022 3947.38 4.83 -0.71 2.38
2 ∆g 8200 5070.31 44.17 18.28 -5.96
2 ∆g 6022 5221.83 12.32 5.96 0.34
2 ∆u 1111 1347.52 -3.12 -4.31 3.50
2 ∆u 3311 2561.53 -25.84 -12.77 -8.10
2 ∆u 3111 2589.68 2.31 -7.76 1.45
2 ∆u 1133 2773.19 -1.75 2.64 2.28
2 ∆u 1131 2795.50 3.62 -1.63 2.53
2 ∆u 5311 3820.24 -22.25 -15.79 -6.13
2 ∆u 5111 3855.82 -8.16 -2.62 1.60
2 ∆u 7311 5100.92 -7.13 -12.02 0.80
2 ∆u 7111 5142.62 7.86 8.13 3.11
2 ∆u 5131 5226.71 -40.65 11.05 -2.32
2 ∆u 5133 5262.39 -4.98 -16.91 -8.44
2 ∆u 5131 5306.21 1.21 -4.01 -4.88
3 Φg 3300 1861.93 -19.17 -14.54 -12.69
3 Φg 1122 2084.85 2.44 -3.68 7.54
3 Φu 2211 1972.59 -13.03 -14.71 -2.07
3 Φu 0033 2198.13 27.29 19.09 15.24

a All energies are in cm-1.
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gained by the introduction of the (polyad breaking) parameter
A (fit H2 compared to fit H1). Inclusion of additional parameters
R, R12, �12 brings the deviation down to 6.1 cm-1. Finally, for
C2H2 (X̃1Σ+) the parameters λ and A12 appear to have the same
effect, as one can also see by the potential function they produce
(see 39).

The values of the parameters in Table 1 support a linear
normal configuration for C2H2 (X̃1Σ+) in its lowest part (<6000
cm-1) of the spectrum. No polyad breaking terms appear to be
important in this case. Polyad breaking terms play an important
role only when bent configurations are studied.

Table 2 shows the experimental term values and the residuals
∆E ) Eexp - Ecalc obtained in calculations H0, H1, and H3.

The results of the fit labeled H0 (three parameters) are
analyzed in the top portion of Figure 11 and those of fit H3

(seven parameters) in the bottom portion of Figure 11. The
discrepancies imply that higher order terms (cubic and quartic)
are missing in the Hamiltonian of eq 10, a result also obtained
in the Dunham-like expansion plus resonances. Higher order
terms can be easily introduced in the algebraic approach, as
discussed in refs 10 and 13, but their effects will not be presented
here. We concentrate instead on some unusual features of the
bending vibrations of acetylene, as emphasized by Birge-Sponer
plots. The anharmonicities of the gerade Πg vibration are
positive, while those of the ungerade Πu vibration are negative,
as shown in Figure 12. The simple three parameter calculation,
labeled H0 in Table 1, produces anharmonicities which are
positive for the gerade vibration and negative for the ungerade.
In addition, the Birge-Sponer plot of the ungerade vibration
has a marked odd-even staggering. This staggering is not
clearly visible in the gerade vibrations, partly due to the fact
that the term value of the ν4 ) 4 state in not known for the
gerade vibration. In fit H3, the situation improves for the gerade
vibration but becomes worse for the ungerade vibration. This
again indicates that higher order terms may be needed.

Odd-even staggering is an important feature of bending
vibrations, as it indicates a tendency toward instability leading
to a cis or trans bent configuration. To display the instability,
we show in Figure 13 the Birge-Sponer plot of the gerade
vibration ν4 obtained using the simplified Hamiltonian eq (34)
for η ) -1 and 	 ) 0, 0.1, 0.2, 0.3. One can see from this
figure how the staggering increases with 	.

6. Summary and Discussion. In this article, we have
presented an algebraic approach to coupled benders, capable

of describing within the same framework, all situations, linear,
cis-bent, trans-bent, and nonplanar, and applied it to a sample
calculation of the pure bent spectrum of C2H2 in its ground
electronic state X̃1Σ+. A 3-parameter fit of 53 term values below
6000 cm-1 gives a rms of 17.1 cm-1, while a 7-parameter fit
gives a rms of 6.1 cm-1. These fits were done with a quadratic
Hamiltonian. We are planning in the immediate future to include
higher order terms, cubic and quartic, to bring down the
deviation to spectroscopic accuracy (e1 cm-1), as already shown
in ref 13 where the introduction of one cubic (n̂1 + n̂2)M̂12 and
one quartic (l̂1

2 + l̂2
2)M̂12 term brought the deviation down to

≈1 cm-1, and, specially, in ref 9, where the introduction of
two cubic and three quartic terms brought the deviation down
to 0.06 cm-1.

In view of the versatility of our approach, we plan to perform
calculations of the trans-bent configuration of C2H2 in its excited
electronic state Ã1Au, and most importantly of the nonplanar
configuration in water peroxide (H2O2),49 treated in part in ref
18.

The algebraic method is on one side directly connected with
the Dunham-like plus resonances expansion and on the other
side to the force field expansion. We are planning to compare
the potential functions obtained from the algebraic approach
with ab initio functions, when available, and with phenomeno-
logical force field functions.

Figure 12. Birge-Sponer plot for ν4 and ν5 overtones. Available experimental data and results of calculations H0 and H3 are shown.

Figure 13. Birge-Sponer plot for N1 ) N2 ) 6, 	 ) 0, 0.1, 0.2, and
0.3. Only the states corresponding to pure overtones of the gerade
vibrational bending mode are shown. The control parameter is η )
-1.
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